
9 Computing with bases

We spent a lot of time looking how to deal with vectors in Rn, or, more generally, in Fn. What about
other finite dimensional vector spaces? It turns out that even if we are working in some abstract finite
dimensional vector space V over F, it is still possible to do all the computations with vectors in Fn.
I will say more about it later, but now I will just show how it works.

Let V be a finite dimensional vector space over the field F, and assume that B = (v1, . . . , vn) is a
basis in V . This is the first time, when the order of these vectors is actually important and hence in
this lecture I will be talking about ordered collections of vectors from V . Recall that having a basis
means exactly that each vector v ∈ V has a unique representation

v = α1v1 + . . .+ αnvn.

The scalars αi are called the coordinates of v with respect to basis B. If for u ∈ V

u = β1v1 + . . .+ βnvn,

then, clearly,
u+ v = (α1 + β1)v1 + . . .+ (αn + βn)vn,

so that the i-th coordinate of u+ v is αi + βi. Similarly, the i-th coordinate of γu is γαi.
The key fact is that I can consider the coordinates of u as an elements of Fn, and, in the opposite

direction, any vector x ∈ Fn gives coordinates of some vector w ∈ V . To summarize, each ordered
basis for V determines one-to-one correspondence

v ∈ V 7→ (α1, . . . , αn) ∈ Fn

between the set of all vectors in V and the set of all n-tuples in Fn. Note that the sum u + v
corresponds to the sum of two vectors in Fn and γv corresponds to the product by a scalar in Fn.
This means that all the calculations can be performed in Fn, and any finite dimensional vector space
V of dimension n actually can be represented as Fn (we say, mathematically, that these two vector
spaces are isomorphic).

Now, since it is possible to have many different bases, I want to see how the coordinates of my
vector change with respect to the given basis. From now on, my vectors x ∈ Fn are column-vectors,
and I will denote x = [v]B to emphasize the dependence of x on the basis. Let B′ = (v′1, . . . , v

′
n) be

another basis in V , hence I will have a different vector x′ = [v]B′ . How the vectors x and x′ are
related?

I have that

v′j =
n∑

i=1

pijvi,
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for some constants pij . Now,

v = α′
1v

′
1 + . . .+ α′

nv
′
n

=
n∑

j=1

α′
jv

′
j

=

n∑
j=1

α′
j

n∑
i=1

pijvi

=

n∑
j=1

n∑
i=1

(pijα
′
j)vi

=
n∑

i=1

 n∑
j=1

pijα
′
j

 vi.

This implies, due to the uniqueness of the coordinates with respect to a given basis, that

αi =
n∑

j=1

pijα
′
j , i = 1, . . . , n,

or, denoting P = [pij ]n×n,
x = Px′.

Since both bases are linearly independent, it implies that x = 0 if and only if x′ = 0, therefore,
the corresponding system of homogeneous equations has only the trivial solution, hence P must be
invertible, and hence

x′ = P−1x.

Using the introduced notation, the same connection can be written

[v]B = P [v]B′ ,

[v]B′ = P−1[v]B.

Thus I have proved

Theorem 9.1. Let V be n-dimensional vector space over F and let B, B′ be two bases of V . Then
there is a unique, necessarily invertible, n× n matrix P with entries in F such that

[v]B = P [v]B′ ,

[v]B′ = P−1[v]B,

for every vector v ∈ V . The columns of P are given by

pj = [v′j ]B, j = 1, . . . , n.

Remark 9.2. Actually, a converse is true: For any invertible matrix P and fixed basis B in V there
is a unique basis B′ with the aforementioned properties. I will leave proving this fact as an exercise.
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Example 9.3. Recall that in the previous lectures I showed that the vectors

v1 = (1, 2, 2, 1),

v2 = (0, 2, 0, 1),

v3 = (−2, 0,−4, 3).

are linearly independent and hence form a basis on the subspace W = span(v1,v2,v3). I also shower
that an arbitrary vector x ∈ R4 is also in W if and only if x3 = 2x1. Now consider another three
vectors:

v′
1 = (1, 0, 2, 0),

v′
2 = (0, 2, 0, 1),

v′
3 = (0, 0, 0, 3).

They are clearly in W . Also they are linearly independent (check this carefully) and hence form
another basis B′ of W . Consider a vector z ∈ R4 whose coordinates relative to the B and B′ bases
are x and x′ respectively. I want to find matrix P , such that x = Px′.

I know that to find P , I need to find the coordinates of v′
i with respect to B. In coordinates, for

example, for the first vector, I must have
1
0
2
0

 =


1
2
2
1

 p11 +


0
2
0
1

 p21 +


−2
0
−4
3

 p31.

Since I know that my third coordinate must be doubled first coordinate, I can disregard the third
row and hence end up with the system of linear equations with a square matrix, which I can invert to
find 1 0 −2

2 2 0
1 1 3

−1

=

 1 −1/3 2/3
−1 5/6 −2/3
0 −1/6 1/3

 .

Therefore, the first column of P is given as1 0 −2
2 2 0
1 1 3

−1 10
0

 =

 1
−1
0


Similarly, I find the rest of coordinates and obtain

P =

 1 0 2
−1 1 −2
0 0 1

 .

Hence, every time when we are dealing with finite dimensional vector spaces and performing some
computations with coordinates, it should be clear that the computations are performed with respect
to some fixed basis. Why then we never mention this when doing computations in Math 129 with the
usual vectors and matrices in Rn? The answer is because the general expression “vector x ∈ R3 has
coordinates [x1 x2 x3]” is an abbreviation of the correct “vector x ∈ R3 has coordinates [x1 x2 x3]
with respect to the standard ordered basis (e1, e2, e3).” Keep this in mind when you perform such
computations.
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